

# Contra Costa College Course Outline

| Departmen       | ıt & Number     | PHYS-230                                                                   | Number of Weeks per term           | 18           |
|-----------------|-----------------|----------------------------------------------------------------------------|------------------------------------|--------------|
|                 | Course Title    | General Physics II                                                         | Lecture Hours per term             | 90           |
|                 | Prerequisite    | PHYS-130 and MATH-290                                                      | Lab Hours per term                 | 36           |
|                 | Co-requisite    |                                                                            | *HBA per term                      |              |
| Prerequisite or | concurrently    | MATH-290                                                                   | Activity Hours per term            |              |
| Cha             | llenge Policy   |                                                                            | Units                              | 4            |
|                 | Advisory        |                                                                            | _                                  | L,           |
| *HOURS BY       |                 | MENT: Hours per term.  vide a list of the activities students will perform | in order to satisfy the HRA requi  | irement):    |
| ACTIVITES       | s. (1 lease pro | vide a list of the activities students will perform                        | in order to suitisfy the HD71 requ | iromonty.    |
| COURSE DE       | SCRIPTION       | 1                                                                          |                                    |              |
| Dhyai           | og 220 ig c o   | continuation of Physics 130. The fundamer                                  | otals of electricity and magnet    | iem will k   |
|                 |                 | ing study of electric fields, potential, resis                             |                                    |              |
|                 |                 | tance, alternating current, and electromagne                               |                                    | > IIOtyvOIK  |
| magne           | cusiii, illuuc  | tance, atternating current, and electromagne                               | no mayos, and oroenomos.           |              |
| COURSE OB       | IFCTIVES        |                                                                            |                                    |              |
|                 |                 | and the standard will be able to                                           |                                    |              |
|                 | -               | e course the student will be able to:                                      |                                    |              |
|                 | -               | Law to electrostatic charge distributions                                  |                                    |              |
| 2. Eval         | luate the elect | tric field due to a variety of static charge distribu                      | tributions                         | ·            |
|                 |                 | ric potential due to a variety of static charge dis                        | trioutions                         |              |
| 1               |                 | taining capacitors with dielectrics                                        |                                    |              |
| l l             | yze and solve   |                                                                            |                                    |              |
|                 |                 | nderstanding of the origin of magnetic fields                              |                                    | **           |
|                 |                 | vart Law to evaluate the magnetic field due to a                           | -current-element                   |              |
|                 |                 | taining inductors                                                          |                                    |              |
|                 |                 | reen materials that are ferromagnetic, paramagne                           | euc, or diamagnetic                | <del></del>  |
|                 | ve AC circuit   |                                                                            |                                    |              |
| II. App         | piy Maxwell'    | s equations to explain the production of electron                          | nagnetic waves                     |              |
| COLIDSE CO      | NTENT: (14      | detail; attach additional information as needed                            | and include percentage breakdoss   | m)           |
| ·               |                 | trostatics and Coulomb's Law                                               | mis mercus percentage oreandow     |              |
|                 |                 | tric Fields                                                                |                                    |              |
|                 |                 | tric Potential                                                             |                                    |              |
|                 |                 | acitors and dielectrics                                                    |                                    | V            |
|                 | % 5. DC c       |                                                                            |                                    |              |
|                 |                 | netic Fields                                                               |                                    |              |
|                 |                 | -Savart Law                                                                |                                    |              |
|                 | % 8. Indu       |                                                                            |                                    |              |
|                 |                 |                                                                            | tism                               | <del> </del> |
| <del></del>     |                 | omagnetism, paramagnetism, and diamagnet                                   | nom                                |              |
| ļ <b>.</b>      |                 | circuits                                                                   |                                    |              |
| 6               | %   11. Elec    | ctromagnetic waves and Maxwell's equation                                  | ΠS                                 |              |

# METHODS OF INSTRUCTION 1. Lecture with demonstrations

2. Classroom discussions and activities

3. Problem Solving

4. Laboratory experiments using electronic equipment

5. Computer applications, including spreadsheets and computer-based digital sampling oscilloscopes

#### INSTRUCTIONAL MATERIALS

Textbook Title:

Physics for Scientists and Engineers: A Strategic Approach

Author:

Randall D. Knight

Publisher:

Pearson Addison-Wesley

Edition/Date:

2<sup>nd</sup> Edition / Copyright 2008

**NOTE:** To be UC transferable, the text must be dated within the last 5 years OR a statement of justification for a text beyond the last 5 years must be included.

## COURSE EXPECTATIONS (Use applicable expectations)

• The average reading level of the textbook is 13.1

- Homework assignments average nine hours per week.
- Laboratory reports average three hours per week.

### **Outside of Class Weekly Assignments**

Hours per week

Weekly Reading Assignments

Weekly Writing Assignments

Weekly Math Problems

Lab or Software Application Assignments

Other Performance Assignments

| 3  |
|----|
| NA |
| 6  |
| 3  |
|    |

STUDENT EVALUATION: (Show percentage breakdown for evaluation instruments)

|   | 45 | %   | Exams                    |
|---|----|-----|--------------------------|
| _ | 15 | -%- | -Homework                |
|   | 15 | %   | Laboratory Reports       |
|   | 25 | %   | Comprehensive Final Exam |

The percentages vary from instructor to instructor.

#### **GRADING POLICY (Choose LG, CR/NC, or SC)**

| X | Letter Grade                      | Pass / No Pass       | S | Student Choice   |
|---|-----------------------------------|----------------------|---|------------------|
|   | 90% - 100% = A                    | 70% and above = Pass | 9 | 0% - 100% = A    |
|   | 80% - 89% = B                     | Below 70% = No Pass  | 8 | 0% - 89% = B     |
|   | 60% - 79% = C                     |                      | 7 | 10% - 79% = C    |
|   | 50% - 59% = D                     |                      | 6 | 60% - 69% = D    |
|   | Below $50\% = F$                  |                      | E | Below $60\% = F$ |
|   | These percentages vary instructor |                      |   |                  |
|   | to instructor.                    |                      |   |                  |

70% and above = Pass Below 70% = No Pass

Prepared by: Jon Celesia

Date:

Spring 2012

Form Revised 10/09